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SUMMARY

The steady-state behavior of the adaptive line enhancer (ALE) is analyzed for

stationary inputs consisting of finite bandwidth signals embedded in a white Gaussian noise
(WGN) background. Analytic expressions for the weights and output of the LMS adaptive
filter are derived as functions of input signal bandwidth and SNR, as well as ALE length and
bulk delay. The steady-state gain in broadband SNR from input to output is derived as a
function of these same four variables. For fixed ALE parameters and input SNR. it is
shown that this gain increases as the input signal becomes narrower and approaches the
sinusoidal limit. It is emphasized that because the correlation time of finite bandwidth
signals is limited, excessively large values of the ALE bulk delay parameter result in
diminished gain. Furthermore, there is an optimal filter length, whose value depends upon
signal bandwidth and SNR, for which the broadband gain is maximized. These results
demonstrate the importance of including the effects of algorithm noise in analyzing the
performance of real-time adaptive processors.
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1.0 INTRODUCTION

Adaptive digital filtering techniques have been shown to be
effective in a wide range of practical applications where there is insuffi-

cient a priori knowledge of the expected signal and noise parameters to

design optimal fixed filters. The increased computational speed and per-

formance capabilities of modern digital hardware has made it possible to

apply adaptive filtering techniques in a wide range of applications in

recent years. Representative applications include noise cancellation I11,

bioengineering 11] , echo cancellation [2,3], data equalization 14-6],

predictive deconvolution [7], instantaneous frequency tracking 18-101,

speech processing 11,11-13], environmental prediction [141, intrusion

detection 115,161, beamforming 117-191, radar clutter rejection [201,

data communications 121,221, systems identification [23,241, narrowband

signal enhancement 11,10,25-27], narrowband signal detection 128,291,

coherence detection [301, spectral estimation [25,31,32], and narrowband

interference rejection 1331.

Many of the above applications employ external noise references

to remove noise contamination from a desired signal as discussed in I1.

In applications where an external reference for the additive noise is not

available, the interfering noise may be suppressed using a Wiener

linear prediction filter (LPF) if there is a significant difference in the

bandwidth of the signal and the additive noise 11,25-331. As discussed
in the above references, a variety of adaptive estimation techniques

have been employed to provide time-varying estimates of the Wiener

filter coefficients. These include finite impulse response (FIR), infinite

impulse response (IIR), and adaptive lattice algorithms. The estima-

tion technique which is most commonly employed in real-time applica-

tions is the Widrow-Hoff Least Mean Squares (LMS) adaptive algorithm.

(In fact, echo cancellers which utilize a 128 tap LMS FIR digital adaptive

filter are now being produced on a single silicon integrated circuit chip 134]).

In this paper, the steady-state performance of an adaptive LPF which

employs the LMS adaptive algorithm to estimate the Wiener filter coefficients

I



will be analyzed under specified stationary input conditions. This

implementation is the adaptive line enhancer (ALE) which is discussed

in references [1,10,25-33]. As indicated in Figure 1, the ALE is a

digital A-step linear prediction filter for which f is the sample rate,
s

L is the number of adaptive weights, and ' is a bulk delay of an

integral number of samples. For narrowband enhancement applications,

the output is r(k) :  , and A is chosen to optimize the treqiuencv resolution

as discussed in [25,31,321. In the case of finite bandwidth signals in

correlated noise, A is selected so as to suppress the additive noise

without causing significant signal attenuation 1351.

References 11-33] contain a variety of applications of adaptive

Wiener LPFs. As discussed in [23], the accuracy of FIR system identi-

fication methods is dependent upon the input signal to noise ratio (SNR)
and the bandwidth of the input signal(s) of interest. Effective utiliza-
tion of adaptive LPF techniques for single reference noise suppression

applications requires knowledge of the values of A and L that maximize

noise suppression without appreciable signal distortion. The elimination
of signal distortion is particularly important for the application of LPF

methods to speech enhancement [12,13], system identification 123,241,

and other applications described in [1-331. It was shown in [25] that

the LPF produces an intrinsic amplitude distortion which is a function

of the input SNR for sinusoidal signals embedded in uncorrelated noise.

The gain in output SNR of the ALE relative to that of the input was

shown to be dependent on the input SNR and is limited by the algorithm

noise of the LMS estimation algorithm [26]. It was demonstrated in [291

that the statistical properties of the input are significantly altered by

the ALE.

By using the error signal c(k) as the output of the device, the
ALE can also be applied to the suppression of narrowband interfer-
ence from broadband signals of interest.

2
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In this paper we will extend the results obtained in 125,26) to

derive analytical expressions for the impulse response and transfer func-

tion of a Wiener LPF and for the output power spectral density of the ALE

for an input signal composed of one or more stationary narrowband signals

in white Gaussian noise (WGN). These signals consist of WGN passed

through a filter whose bandwidth c is quite small relative to the Nyquist

frequency, but generally comparable to the bin width I/L. Analytical

expressions for the LPF impulse response and transfer function vill bc

developed assuming a stationary input sequence x(k) whose autocor-

relation function is known exactly and has a rational z-transform,

S (z). Under these conditions, the solution for the FIR Wienerxx
LPF impulse response may be obtained by using the method of unde-

termined coefficients to solve a set of linear equations in which the

dimensionality is reduced from L to a value determined by the number

of poles and zeroes of Sxx (z) . As discussed in [ 36, 37] , the use of

methods such as Levinson's algorithm provides efficient computational

techniques for solving the L dimensional Wiener equations but requires

the number of filter taps and the prediction distance to be known

explicitly. The formulation used in this paper allows L and A to be

treated as adjustable design parameters whose values can be chosen

so as to maximize output SNR for various input conditions. These

results illustrate that the Wiener LPF will produce both amplitude and

bandwidth distortion of the narrowband components of x(k) at the

filter output y(k). It will further be shown that the magnitude of

this distortion is a function of the input SNR, the bandwidth ( 4) of

the signal, and the frequency resolution (f /L) of the LPF. Theses

results reduce to those previously derived for sinusoidal inputs in

1251 when a = 0.

The steady-state noise suppression capabilities of the ALE will

be determined as a function of the input signal bandwidth and the

input SNR for a single bandlimited input in WGN. Analytic expressions

will be derived which express the impulse response and transfer func-

tion of the ideal Wiener LPF as a function of both filter parameters and

4



signal variables. Using a definition of output SNR that considers con-

tributions of both the optimal Wiener filtez and the msadjustmcnt iioise

'1 of the LMS algorithm, broadband gain will be computed as a function of

the ALE parameters L, A, and the feedback gain constant o , as well

as the input variables i and SNR. It will be demonstrated that for

ALE parameters and broadband input SNR fixed, the gain of the device

decreases as the input signal bandwidth increases. In addition, A

should not exceed i/ot, and there is an optimal value of L which is a

function of the input signal bandwidth and broadband SNR. In the

limit as a - 0, these results are found to be in agreement with those

of previous studies dealing with sinusoidal signals embedded in a WGN

background.

aim



2.0 ALE WEIGHT-VECTOR MODEL

The basic properties of the adaptive line enhancer and its

operation are described in 11,25,26]. As indicated by the block
diagram in Figure 1, the ALE consists of an L-weight linear predic-

tion filter in which the filter coefficients, w.(k), are updated at the

input sampling rate, fs. The adaptive filter output r(k) is defined

by

L-I

r(k) = wi(k) x(k-i-A), ()

i=0

where A is the prediction distance of the filter measured in samples.

The output r(k) is then subtracted from the input sequence x(k) to

form an error sequence c(k). The error sequence is multiplied by a

scalar constant, i , and fed back to adjust the filter weights according

to the Widrow-Hoff LMS algorithm 138]

w.(k+1) = w.(k) + 2 z(k) x(k-i-A), i 0,1. L-l. (2)1 i

Provided that the feedback constant , is strictly less than the recip-

rocal of the largest eigenvalue of the input autocorrelation matrix, the

expected value of the weight vector w(k) converges to the Wiener

solution

w - d (3)

where + is the L×L input data autocorrelation matrix with elements

k(k- 9) = Ex(k) x(9,)) and d is a vector of length L with

components dk =

As developed in prior work 1261 and depicted in Figure 2, a

steady-state model for the converged ALE weight vector w(k) =

[w 0 (k) ... WLl(k)I may be obtained by decomposing w(k) into

two parallel weight vectors w(k) w' + w)(k). Here. w* is the

6
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optimum Wiener A-step predictor weight vector, and wL(k) is a very

slowly fluctuating vector random process with a mean value of zero.

Under the assumptions of relatively slow adaptation, low input SNR,

and white Gaussian input noise, the weight vector "misadjustment"

w(k) is assumed to be independent of the current data in the filter.

Thus, the steady-state weight vector may be treated as a Gaussian

2 2random variable w with mean w* and covariance o I, where 0

I' C and minis the minimum mean squared error associated with

Wiener filtering of the input [I1

For the equivalent model of the steady-state ALE illustrated in

Figure 2, the output r(k) is a superposition of the Wiener filter (WF)

and misadjustment filter (MF) outputs, i.e.,

r(k) = r*(k) + r(k). (4)

For an input x(k) comprised of a signal and noise components, r(k)

is thus a sum of four terms--WF signal, WF noise, MF signal, and MF

noise. The output SNR can be calculated as the power in the WF

signal component divided by the total power contributed by the other

three terms. The gain of the ALE can then be found by dividing the

output SNR by the input SNR.

In the sections that follow, a description of the procedure used

to derive the impulse response of an ideal Wiener filter, w*, will be

given in Section 3.1. These results will then be applied to obtain w*

and the Wiener filter transfer function H*( .) for the special case of a

narrowband input signal in additive WGN in Section 3.2. The output

SNR gain of the ALE will be defined and computed in Section 4 as a

function of input and adaptive filter parameters.

8



3.0 DETERMINATION OF THE MEAN LPF COEFFICIENTS

3.1 Generalized Inputs

Referring back to Figure 1, the LPF coefficients, w*(k), which

minimize the power in the error sequence c(k), satisfy the discrete

form of the Wiener-Hopf equation,

L-1

k=0xx(Z-k) w*(k) = = 0,1,...,L-1. (5)E xxx(+)
k=0

The series x(9,) = E[x(k) x(k+9-)], where the overbar denotes complex

conjugation, is the autocorrelation of the stationary input x(k). The set

of L linear equations described by Equation (5) can be solved by elementary

methods if the z-transform of xx(M)

( xx(z) a x( ) z -

is a rational function of z [351. The assumption of stationarity means

that S xx(Z) = S x(I/z) for all complex values of z, and therefore

Q j

Sx(z) = H(z)H(l/z) = K q1

[H z-e p+Wp) (z-e P

p=l (6)

where K, a , q are positive real constants, and w , q lie in the closed

interval [-n,n]. Thus, S (z) is characterized by P pairs of poles at

z = exp(±, ' +j ) and Q pairs of zeroes at z = exp(±- +j q). The expansion

in Equation (6) with z = exp(j, ,) represents the power spectrum of a complex

process. For a real process, any complex poles and zeroes of Sxx (z) will

appear in quadruplet sets because of the presence of conjugate pairs at

z exp(± D-jwJ) and z exp(+ q-j q).

9



The general form for the solution to Equation (5) for stationary

inputs with rational power spectra such as that described by Equation (6)

is derived in [351. In the case where number of zeroes of S xx(z) does

not exceed the number of poles (Q < P), the LPF coefficients can be

expressed as

Q + e- qk+jpq -2 (L-l-k)+j q}-1 ~w*(k) = B + 1k)~1q
W*k E q q

q=1

P-Q

+ C (k-r+l) + C- 6(k+r-L) k = 0,1,...,L-1,

r=l (7)

where 6(k) is the Kronecker delta function. Note that, in general,

w*(k) consists of sums of damped exponentials as well as impulses.

The complex exponentials exp(+ +j ) are the zeroes of S (z), andq q xx
the amplitudes of the terms decaying from the beginning (k=0) and end

(k = L-1) of the filter are symbolized by the constants B + and B-
+q q

respectively. Similarly, C r and Cr represent the amplitudes of impulses

that appear at k = r-1 and k = L-r when P > Q. The constants with a

+' superscript :an be thought of as forward terms, while those having

a I-" are associated with reflection terms which occur because of the
+ +-

finite filter length L [1]. The values of Bq and C- can be determinedq r
by solving the set of 2P coupled equations obtained from substituting

the expression for w*(k) given in Equation (7) into Equation (5) pro-1
vided that xx ( 90 is known explicitly [35].

10
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3.2 Narrowband Signals Embedded in WGN

The primary difficulty in applying Equation (7) to obtain the

mean LPF response is that it requires a pole-zero model for the LPF

input autocorrelation in the form defined by Equation (6) [1]. For

mutually uncorrelated narrowband processes embedded in additive

broadband noise,

xx(9) = ( ) + nn (0 (8)

and

S (z) Ss(z) + S (z) (9)

where the signal transform S (z) and the noise transform S (z) areS nn

known rational functions of the type described by Equation (6).

Although the poles of Sx(z) are simply the sum of those of

Sss (z) plus any contributed by S nn(z), its zeroes do not have a

simple analytic form in the general case. However, as explained in

1351, approximate expressions for the values 6q, Wq of Sxx(Z) can

be derived if S (z) is comprised of pole pairs lying sufficiently close

to the unit circle that their contributions to the total power spectrum

do not overlap appreciably. Under these conditions of widely-spaced

narrowband signal processes, the background noise spectral density can

be approximated by evaluating Sxx(ew) at frequencies away from the

vicinity of the poles of Sss(W. The transform of the total input is then

expressed as the product

S xx (z) S (z) R(z), (10)

where R(z) is a rational function of z characterized by the poles of
Sss (z) and an equal number of zeroes located on the same radial lines

1351. Equation (10) implies that when broadband noise having Pn pairs

of poles and Q n pairs of zeroes is added to narrowband signals having

P pole pairs, the total input process may be approximated by an
5
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autoregressive, moving-average (ARMA) model with 2 (Ps+Pn) poles

and 2(P s+Q n ) zeroes.

The utility of the general approach outlined above is now

demonstrated by consideration of a simple example. Assume that the

input autocorrelation is real and consists of a finite bandwidth signal

embedded in uncorrelated noise, i.e.,

2 - 0,. cos W k+ V2 6(M), (11)

2
where a , c, and wo represent the power, 3 dB half bandwidth, and

02
center frequency of the signal and v is the power of the noise. In

this case, the z-transform of the narrowband signal term,S c +',
-2 - W 1- j I) - -j C"'

(z-e (z -e 0) (z-e 0 )(ZI

has four poles at exp(±c-+jc 0 ). Noting that Sn (z) = 2 has neither poles

nor zeroes and using the approximation given in Eq. (10) valid for < .

S (z) V 2 (z-e )(z-e +J0) (z-e )(z-e ) (12)
(z-e 0) (z-e a+ j W0) (z-e ) (z-e a]O)

Thus, the z-transform of the total input has four zeroes located at

different distances away from the unit circle, but on the same radial

lines as the signal poles. In terms of these zeroes at exp(±_+j,, 0 ), the

LPF coefficients for the real input autocorrelation designated in Equation

(11) are written in a manner analogous to the general form of Equation

(7), i.e.,

Note that because Oxx( 0 ) = a2+V 2 does not depend upon a, it is the
total energy in the input spectrum that is held constant in this model.

12
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w (k) = [ " + B e cos 0 (k+',). (I o

+
The constants B, B , and B are determined by substituting Equations

(11) and (13) into (5). Assuming the prediction distance A > 0 and

neglecting the summation over non-stationary cosine terms (L -- 1), the
resultant equation contains exponential terms of the form e e
ra n -a(L-tl-n0

e and e Grouping terms of either of the first two of these

types specifies the relationship between the zero and pole locations in (12)

to be

cosh H cosh Y + SNR sinh -', (14)

where a is the input signal bandwidth and SNR A 2/V 2 . As derived

in 1351 for a more general case, the above equation implies that for

poles and zeroes close to the unit circle,

7 + S1. (15)

This dependence of filter bandwidth on signal bandwidth and broadband

input SNR is illustrated graphically in Figure 3. Note that the plot of B

vs. SNR for each different value of a, can be characterized by two linear

asymptotes. To the left of the breakpoint at SNR = a, the curves become

horizontal, indicating that B - a in the limit of noise only input. To the

right of the breakpoint, the filter bandwidth may be approximated by

the line - / tSNR in the logarithmic plot.

Determined in a similar manner by equating coefficients in e
-a(L-l- )

and e , the forward and reflection amplitudes are:

B +  2e- aA( -a) (B+a) 2 (16a)
(+c) 2_ e-2BL(B-a) 2

and

B- 2e- 'A(B+a) ( -a) 2 e- (L+I)=2 -2BL 2 ' a,B << 1. (16b)
(+a) -e (B-a)

13
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Equations (13) through (16) provide a complete description of the solu-

tion to the Wiener-Hopf equation for an input consisting of a real narrow-

band process in additive uncorrelated noise.

The frequency response of the LPF is now determined as the

sum of the transforms of the forward and reflection components of

*(LA). i.e.wk  , ,

L-1 L-1
+ - 3k1L Ik j-

H = Be- cos (A)(k+A) e- + B e CoL-l-k)s W(k+A)e-J.k

k=O k=O

Performing the summations and taking the magnitude-squared assuming

no spectral overlap of positive and negative frequencies,

e- l B+ 2 2
12 _ eL- B +B cosh 8L - cos xL2 2 cosh 8- cos x

B+B - (cosh cosx-1)(cosh8LcosxL-1) - sinh sinx sinh8LsinxL

(cosh - cos

(17)

where the variable x is used to denote the frequency difference - 0 '

The frequency response described by Equation (17) is plotted in

Figure 4 for fixed w, A, L, and a. The tendency of the Wiener filter

to turn itself off in the absence of correlated inputs is evidenced by

the downward shift in IH*(w) 12 for decreasing values of input SNR.
Note also that the vertical bars marking the 3 dB bandwidth of the filter

appear at frequencies approximately equal to w 0 + a for SNR < a, but

they spread farther apart for higher SNR. This broadening of filter

bandwidth, already evident from the plots of that appeared in Figure

,1 3, may be interpreted as follows: In the low SNR case, the frequency

response of the LPF must be narrow in order to suppress the rather

large amount of noise power present in the vicinity of the signal. As

the relative strength of the signal increases, however, the transform

of the filter can afford to widen in order to respond to the signal com-

ponents at ti u09 without passing significantly more noise power.

15
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Unlike the filter bandwidth 3, the amplitude coefficients B +

and B appearing in Equation (13) depend upon the filter parameters

,A and L as well as input SNR. First, observe that the values of

both the forward and reflection amplitudes given in Equation (16) are

proportional to exp(-aA). This implies that for a fixed value of a , 0,

the magnitude of w*(k) diminishes as the input signal suffers greater

decorrelation for increasing values of bulk delay. Second, note that

the contribution of the reflection term relative to that of the forward

term is dependent upon the filter length, i.e.,

B - (L+I) (B-(x)

B + (B+A)

for f, << 1. Thus, for L - 1/0, the relative value of the reflection

term approaches zero, and w*(L,A) is comprised solely of a damped

sinusoid decaying from the beginning of the filter, in agreement with

the infinite length Wiener filter discussed in 139].

There is another limiting case of interest. Under conditions

where the filter length is sufficiently short relative to the signal band-

width that 1L - 0 for all SNR, the input resembles a single sinusoid

in white noise. Consideration of this case is important both as a check

on the results presented above and as a means of comparing the behavior

of the LPF for inputs of finite versus infinitesimal bandwidths. Assuming

that exp(-k) is approximately unity for all 0 < k < L, the Wiener coeffi-

cients given in Equation (13) simplify to

w (k) = (B++ B-) cos , 0 (k+A), 3L << 1,

a constant times the phase-compensated input signal. In the limit as

BL * 0, both B + and B- computed in (16) approach the same value.

In terms of the definition used in previous studies,

a* A L SNR/2
1 + L SNR/2'

17



the forward and reflection amplitudes are B + B exp(-aA)a IL.

Therefore, Equation (13) gives

2a* -,A
w*(k) e cos "1 0 (k+A), 3L << 1,

which agrees with previous results provided the delay A does not
-1

decorrelate the signal. Thus for A << a , the performance of the

LPF of length L << (2 + aSNR)-z for a finite bandwidth signal in
white noise approaches that achieved for a pure sinusoid embedded

in the same broadband background.

18
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4.0 SECOND-ORDER OUTPUT STATISTICS FOR NARROWBAND
SIGNALS IN WGN

Recalling the weight vector model described in Section 2, the ALE

output for narrowband inputs in WGN is comprised of four additive com-

ponents: (I) Wiener-filtered (WF) signal; (2) WF noise; ',3) misadjustment

filtered (MF) signal; and(4) MF noise. The general behavior of their

second-order statistics is typified by the power spectral densities dis-

played in Figure 5. Note from Figure 5a that the WF signal spectrum, the

result of passing a narrowband input through a narrowband filter, exhibits

sharp attenuation for frequencies away from the signal center frequency.

The two WF terms match at = .0 because S s( 0)/S n n ( 0 0 SNR/

is approximately unity in this particular example. For the same

reason, the power spectral densities of the MF terms displayed in

Figure 5b are also equal to one another at the center frequency,

but at a level of more than 20 dB lower than those of the WF terms.

Broadband gain, dependent upon the total power over the

entire frequency spectrum, can be calculated directly from the input

autocorrelation given in (I1) and the convergent ALE weight vector

described in (13). Representing the autocorrelations of the four

mutually uncorrelated components of r(k) as Q ' M) and
s n s

n () , the output SNR is

*(0)

SNR = 
(18)

n *(0) + s(0) +

The sum of the output autocorrelations for the two misadjustment terms

is

(0) = 1s(0) + Tn (0) ' min L(a 2  + )2) (19)

where ra in' the minimum mean-squared error associated with Wiener

filtering of the input, is approximately equal to v 2 for large values of

L {31. Assuming a sufficiently long filter length, the WF noise com-

ponent is

19
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Figure 5. Power spectral densities of the four ALE output components for

the parameters i = 2- 13 , A = 1, 1, = 1024. = /lL, SNR. =-30 dB.
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L-I L-1
,(0) 2 k ww wV 26(k-

k=1 9=0 
(20)

2, 2- IL !(B+ + (B-) sn L + BL! i

1. I
inB

Using the same assumptions, the WF signal term is evaluated:

L-I L-I

S* *0 2 e-a Ik- Z I cos(k-,)

k=0 k=0

2 - L 2 2
0 e (B+) + (B) I coshinh -L e-L (

2 [cosh BL sinh i (21)

+ B +B le [( 2+a2 )coshBL + 2,o1sinhL] - (62+2)

SB2 2

Broadband ALE gain is determined by the ratio of (21) divided

by the sum of (19) and (20) to input SNR. = 0 2/\ 2 . The effects of
input signal variables and filter parameters are illustrated in Figures

6 through 9. In all cases, the total input power is held constant

(2 + v2 = 0. 04), and the ALE feedback parameter is also fixed (j = 2 13).

As a demonstration of the result of increasing signal bandwidth, broad-

band gain is plotted as a function of input SNR in Figure 6 for = 1,

L = 1024, and ,t varying from zero to 16 times the ALE resolution (I/L).

Note from the shift downward and to the right that gain decreases for

increasing a and the performance is most severely degraded at low values

of input SNR.
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Figure 6. Broadband ALE gain vs. input SNR for several values of

signal bandwidth (ao 0 represents sinusoidal limit).
Filter parameters are v = 2-13 , A = 1, and L 1024.
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Lhe effect of filter parameters L and A is shown in Figure 7.

In 7a, gain vs. SNR is plotted for signal bandwidth and filter length

ti\td. and bulk delay varying from unity to 3 times L. As expected,

AL. gain decreases exponentially as a function of the product kA due

to increasing signal decorrelation. The dependence of gain upon filter

length is more complicated, however. Note from the crossing curves in

Figure 7b that for fixed a and A, the value of L yielding the maximum

gain is equal to or less than the inverse signal bandwidth, depending

upon the input SNR.

In order to demonstrate the relationship between the optimum

filter length and the input signal variables, broadband gain is plotted

as a function of L for several values of ot and SNR in Figure 8. From

8a, it is obvious that for low SNR, the peak in the gain curves for each

value of t coincides with the small vertical bar which marks the point

where L = 1/,i. The same is true only for the two lower curves in

Figure 8b, where a > SNR - 2- 10; the optimum L for i < 2- 1 0 is left

of the 1/ax mark. The family of curves in 8c shows that for SNR -, a,

gain is less sensitive to the choice of L.

As further clarification of ALE gain performance as a function of

filter length, component terms are plotted in Figure 9 for moderate and high

SNR conditions. The three curves displayed in each case represent WF

signal ( s(0)), WF noise ( *(0)) and MF signal plus noise ( (O)). LookingS n
first at 9a, note that 4n (0) '< (0) for all L and thus broadband noise at

n
the output is dominated by the misadjustment terms regardless of ALE
filter length. The *(0) numerator component rises quite rapidly with

S
increasing L and then saturates at about L = l/I, the point marked by

-10the small vertical bar. This explains why the ALE gain curve (a = 2

appearing in Figure 8b exhibited a maximum for that value of L. The

component terms displayed in 9b illustrate that for high SNR, the behavior

is not so simple. Although the *(0) shows the same saturation behavior
5

in the vicinity of L = 1/1B, the output noise is not dominated by the linearly

increasing misadjustment terms except for very long filter lengths where
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BL I and there are a significant number of unused adaptive weights.

The flattened gain curve in Figure 8c reflects the behavior of these

components.

2
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5.0 CONCLUSIONS

The steady-state behavior of the adaptive line enhancer (ALE)

has been analyzed in this paper for stationary inputs consisting of

narrowband signals embedded in additive broadband noise. The nar-

rowband signals were modeled as the output of a bandpass filter of

finite bandwidth cc, centered at a specified frequency ,)0" Assuming

non-overlapping signal spectra (a << 1 and 0 <<0 << .0), analytic

expressions for the ALE weights and output were derived as functions

of input and adaptive filter parameters. The steady-state ALE has

been decomposed into two components: a deterministic, time-invariant

Wiener prediction filter (WF) and a slowly-varying, random misadjust-

ment filter (MF). The relative contributions of these two filters were

discussed, and it was shown that the MF components can be neglected

only in certain cases of high input signal-to-noise ratio (SNR).

An appropriate pole-zero model was defined which allowed the

WF solution to be determined for an arbitrary prediction distance (A)

and number of adaptive weights (L). It was demonstrated that the WF

takes the form of a bandpass filter centered at frequency 0. The

bandwidth (6) of the Wiener filter was shown to be a function of input

SNR and signal bandwidth. It was emphasized that the value of B

exceeds that of ot, except for very low input SNR conditions where the

filter and signal bandwidths match. The general expressions for the

WF impulse response and transfer function herein derived have been

simplified for two limiting cases--one in which the length of the trans-

verse adaptive filter is sufficiently long that V-L - 1, and the other

in which L << 1 for the input signal bandwidth and SNR of interest.

The results for this latter limit were shown to agree with those previ-

ously derived for sinusoids in WGN 1261.

The output of the steady-state ALE was modeled as the sum of

four independent components--one considered signal and the other

three regarded as noise. The output signal component corresponds to

28
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the narrowband input filtered through the WF, while the output noise

consists of WF filtered noise as well as MF filtered signal and noise

terms. Second-order statistical properties of these four output com-

ponents were derived, and an expression was given for the broadband

ALE gain, the ratio of output SNR to that of the input. For fixed ALE

parameters, the gain of the adaptive filter was shown to decrease with

increasing input signal bandwidth and/or diminishing input SNR. in

the limit as a approaches zero, the gain expressions herein derived

reduce to those previously reported for adaptive enhancement of sinu-

soids in WGN [261.

The determination of optimal ALE length and bulk delay param-

eters for given input bandwidth and SNR has also been discsussed in

this paper. For the narrowband signal model used here, broadband ALE

gain decreases approximately exponentially as a function of increasing

values of the product -C- Because of this effect which results from

decorrelation of a finite bandwidth signal, the ALE bulk delay should

not exceed 1/x when the input noise is uncorrelated. The choice of

optimal filter length is more complicated and depends upon input SNR

as well as signal bandwidth. Under low SNR conditions where the MF

terms dominate the ALE output noise, L t 1/x. For higher SNRopt

where the WF noise component contributes significantly, maximum gain

is typically achieved for a filter length shorter than the inverse signal

bandwidth. The major effect is that attempting to over-resolve narrow-

band signals by increasing L eventually degrades ALE gain because of

larger misadjustment noise at the output. Although these results relate

specifically to applications in which the LMS adaption is used to estimate

WF coefficients, they emphasize the importance of including the effects

of algorithm misadjustment noise in the performance analysis of real-

time adaptive processors.
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Because of the inclusion of a finite bandwidth parameter, the

approach presented in this paper has relevance to more realistic ALE

scenarios than the previously reported studies for sinusoidal input

signals embedded in broadband noise. In addition, the WF analysis

developed here may be applied to a larger class of LPF problems such

as systems identification and speech enhancement. In applications where

LPF coefficients are used to estimate signal parameters, our analysis

indicates that distortions in both amplitude and bandwidth will occur

for finite bandwidth signals. The results presented in this paper

may provide a method for modeling this distortion for the transversal

linear prediction filter.

1
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